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k-point sampling and the k p method in 
pseudopotential total energy calculations 

I J Robertson and M C Payne 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 6 June 1990 

Abstract. A fast method is presented for the calculation of total energies within the density 
functional formalism for systems that require a large number of k-points. Approximate 
solutions at a large number of k-points are obtained from exact self-consistent solutions at a 
smaller number of k-points using an extension of the k * p  method. The method is demon- 
strated by a calculation of the total energy Of FCC aluminium at a series of lattice parameters. 
An analysis is presented that partitions the errors in the calculations into those inherent in 
any finite sampling procedure and those that are specific to the k * p method. The extra error 
due to the k pmethod is shown to be around 10% of energy differences for these calculations 
but a simple modification to the calculations requiring no more computational time reduces 
this error to 2%. For these simple calculations the time saved by using the k p method is 
fairly small but for larger calculations the method is several orders of magnitude quicker. 
Errors from either source are shown to be far less important in the electronic potentials than 
in the eigenvalue sums. It is concluded that in any total energy calculation fewer k-points are 
required to describe the potential than to calculate the eigenvalue sum. This could be 
exploited to gain an order of magnitude saving in computational time in any calculation. 

1. Introduction 

The exact calculation of the total energy of an infinite structure is an intractable problem. 
A considerable number of simplifications and approximations are required to reduce 
the problem to one that can be addressed computationally. Density functional theory 
provides a method for dealing with the electron-electron interaction by mapping the 
system of interacting electrons to a system of non-interacting electrons. The system of 
non-interacting electrons is described by the solutions of the Kohn-Sham equations 
(Kohn and Sham 1965): these are single particle equations which must be solved self- 
consistently. In principle a calculation for an infinite bulk solid would require that the 
Kohn-Sham equations are solved to determine the wavefunctions of an infinite number 
of electrons. Obviously the problem remains intractable in this form. Some method is 
required for approximately representing this infinite number of electrons by a finite 
number of electrons. In the case of a periodic system this is achieved by applying Bloch’s 
theorem (see Ashcroft and Mermin 1976). By suitable choice of supercell even aperiodic 
structures such as surfaces can be considered to be periodic so that Bloch’s theorem may 
be applied. 
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9838 I J Robertson and M C Payne 

Bloch’s theorem states that in periodic system the wavefunctions of the electrons can 
be written as follows 

vk, = U,, exp(ik r) 

where ukn(r) has the periodicity of the system. k is the k-point label which conventionally 
takes all values in the first Brillouin zone. The solution of the Kohn-Sham equations at 
a single k-point is computationally tractable. Therefore the electronic eigenstates and 
their corresponding eigenvalues can be calculated at any k-point. All the eigenstates 
whose energies lie below the Fermi energy are occupied. The total energy of the system 
depends on the eigenvalues and charge densities generated by all of the occupied states 
so that in principle, calculations have to be performed at an infinite number of k-points. 
In practice some method must be applied to reduce this to a finite number of calculations. 

The k-points lie within a finite volume of reciprocal space. However, the properties 
of two wavefunctions on a given band with similar values of k are expected to be very 
similar. If this is the case the electronic states in a region of k space may be accurately 
represented by the state at the centre of the region. Thus the infinite number of k-points 
can be replaced by a finite number of k-points lying within the first Brillouin zone. 

In the past methods have been developed to optimize the choice of k-points for 
completely filled bands so that the charge density and total energy can be accurately 
calculated using a very small number of so called ‘special k-points’ (Baldereschi 1973, 
Chadi and Cohen 1973, Monkhorst and Pack 1976). In these methods symmetry argu- 
ments are employed to deduce those k-points which are expected to be particularly 
representative of the properties of the whole Brillouin zone. Although the absolute 
energies calculated with small k-point sets are expected to be poor, when calculating the 
energy differences between similar structures the errors will tend to cancel SO that the 
errors in the energy differences will be much smaller (Cheng et a1 1987). Nevertheless 
when comparing dissimilar structures the k-point sampling errors from different k-point 
sets are unlikely to cancel and so a much larger number of k-points will be required to 
compute energy differences. 

Problems also arise in the case of metals because some the bands are only partially 
occupied. The problem of sampling k-space is particularly acute around the Fermi 
surface because of discontinuities in functions such as 

where p is the charge density, ask crosses the Fermi surface. Such discontinuities require 
extremely large numbers of k-points for accurate calculation of charge densities and 
total energies. 

The two problems outlined above point to the need for large numbers of k-points in 
many calculations. However, the computational time scales linearly with the number of 
k-points used in the calculation, so that absolute k-point convergence can often not be 
achieved in realistic amounts of computational time. What is required is a quicker 
method of obtaining data from large numbers of k-points which albeit less accurate than 
traditional methods is still accurate enough to be useful. 

One method for generating information at additional k-points is the k * p  method 
(see Harrison 1970). In the past the k p method has been used as a cheap method of 
obtaining non-self-consistent band structures. In this paper we investigate the possibility 
of extending the k * p  method to perform cheap fully self-consistent total energy cal- 
culations with a large number of k-points. In the following sections we will introduce 
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and explain the total energy k p method and investigate the errors associated with the 
method by performing calculations for FCC aluminium. 

In section2, the k - pmethod is outlined and its performance in predicting eigenvalues 
is reviewed and extensions that are required to allow the k * p  method to be used for 
total energy calculations are described. In section 3 the computational method for 
implementing a k p scheme is briefly described. Section 4 outlines the use of the Harris 
energy functional (Harris 1985) in conjunction with the k - p  method. The Harris energy 
functional facilitates an analysis of the errors unique to the k * p  method and those 
inherent in any finite sampling technique. Section 5 analyses these two sources of error 
and assesses their relative magnitudes in the case of absolute energies and energy 
differences. The calculations we have performed to analyse the errors are a severe test 
of the k * p method since we attempt to obtain the electronic states over a large Brillouin 
zone from the solutions at a single k-point positioned at the edge of the irreducible zone. 
The errors will be reduced at no computational cost by using any other sampling point. 
It is also possible to make the errors arbitrarily small by using a larger number of k- 
points or a larger number of electronic bands, although this incurs a computational cost. 
Section 6 discusses the computational time required by the k - p method. Finally section 
7 presents the conclusions of our analysis and lists some of the directions that future 
work may take. 

2. The k p method 

2.1. k - p eigenvalues 

Consider the Kohn-Sham equation for some periodic potential V(r): 

Where V(r) is the sum of the Hartree, exchange-correlation and ionic potentials, Ekn is 
the eigenvalue of the nth band at k-point k and q k n  is the wavefunction of the nth band 
at k. Since Yk,, = U,, exp(ik * r )  we can substitute back into (1) to give 

[(n2/2m)V2 -k v(r)]ykn = E k n y k n .  (1) 

[-(h2/2m)v2 f V(r) f k2 f 2k.p]Ukn(r) = EknUkn(r) 

[-(n2/2m)V2 + V(r)IUon(r) = EOnUon(r). 

(2) 

( 3 )  

wherep is the quantum mechanical operator. Fork = 0 we have 

If we use a basis of Nplane waves then there are Nindependent solutions to (3). Suppose 
that we write the solution at some other k-point k as a superposition of the lowest N o  of 
the solutions at the point k = 0 so that 

NO 

Ukn(r) = 2 aikUOi(r). (4) 
i= 1 

Inserting (4) into (2) gives 
NO NO 

f k2 f 2k*p)Uoi(r) = E k n  aikuoi(r). ( 5 )  
i =  1 i =  1 

Premultiplying both sides by U$ and integrating over all space gives 
NO 

a,[(& + k2)Sji f (j/2k *pli)] = Ek,ajk. (6) 
i = l  

In the limit when the number of plane waves, N ,  and the number of solutions at k = 0, 
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Table 1. Twice the sum of six lowest eigenvalues at various points ( k )  within Brillouin zone 
( k )  for FCC aluminium with lattice parameter of 4.15 A: (a )  using cut-off energy of 100 eV 
(Zeiglmev); ( b )  using k * p  method with 19 bands (Xeig,.,); (c) using cut-off energy of 20 eV 
(Zeig20ev). The electronic potential is the self-consistent potential produced by the occupied 
states at k = 0. 

-29.489 
-30.940 
-33.014 
-35.194 
- 23.201 
-32.393 
-41.535 
-30.201 
-39.385 
-37.690 

-29.489 
- 30.841 
-32.810 
- 34.904 
-23.014 
-32.026 
- 40.981 
- 29.594 
-38,512 
-36.181 

- 24.240 
-25.025 
- 27.730 
-30.435 
- 20.235 
-28.480 
-36.726 
-26.182 
-34.554 
-32.276 

N o ,  are equal (6) would yield the exact solutions in the space defined by the N plane 
waves. Reducing the value of No introduces,an error into the solutions whose magnitude 
will be related to the contribution to a given from the U,, removed from the basis 
set. It is expected that the magnitudes of these contributions would diminish as the 
difference between the energies Ekn and E,, increases. The essence of the k - p method 
is to solve for the low energy eigenstates at arbitrary k-points using significantly less than 
N of the low energy eigenstates at k = 0, thus speeding up the process of calculating 
eigenstates away from k = 0 but without sacrificing too much of the accuracy. It should 
be noted that the choice of k = 0 as the k-point about which one performs k pis certainly 
not unique. One may use any point or indeed any set of points. 

The potential gain in speed of the k * p  method is obvious. For instance, suppose that 
we choose to solve (6) by matrix diagonalization. Since the time taken to diagonalize a 
matrix goes up as the cube of the dimension of the matrix, use of the truncated basis N o  
is expected to increase the speed by a factor of (N/N0)3 over the solution of the N -  
dimensional problem, The computational times for other methods of solving (6) scale 
differently and detailed analysis of the time saving will be left to a later section. 

The price that one must pay for this gain in speed is a corresponding loss of accuracy. 
Consider first the error in calculating eigenvalues for a fixed potential. Table 1 shows 
twice the sum of the six lowest eigenvalues calculated with a fixed potential for various 
points in the Brillouin zone. These have been calculated in three different ways: firstly 
with the k - p method using 19 bands; secondly with a full matrix diagonalization using 
a cut-off energy for the plane wave basis set of 100 eV; thirdly with diagonalization and 
a cut-off energy of 20 eV which gives a basis set of 19 plane waves. As expected, the k * p  
error increases with increasing extrapolation distance and is necessarily positive. In any 
particular direction the variation of the error is roughly quadratic, although the error is 
not isotropic. The errors for the calculation with the 20 eV cut-off energy are much 
larger than the k . p  errors. The results show that the 19 bands at k = 0 form a much 
better basis set than 19 plane waves. 

Closer to the point k = 0, the errors in the k - p calculation become both isotropic 
and quadratic. We have calculated the eigenvalue sums using both the k - p method and 
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Tabk 2. 'Twice the sum of six lowest eigenvalues at various points ( k )  close to k = 0 for FCC 
aluminium with lattice parameter of 4.15 A: (a) using cut-off energy of 100 eV (Teig,wcv); 
( b )  Using k * p  method with 19 bands (Teig,.,). The electronic potential in each case is the 
self-consistent potential produced by the occupied states at k = 0. 

o ,o ,  0 
0, 0,0.05 
0.0.05,0.05 
0.05,0.05,0.05 
0 . 0 , o  1 
0,0.05, 0.1 
0.05.0.05,O. 1 
O,Q.! ,O. t  
0 .05,0.1,0.1 
0.1,0.1,0.1 

0.0 
0.05 
0.071 
0.087 
0.1 
0.112 
0.122 
0.141 
0.15 
0.173 

-29.489 46 
-29.803 29 
-29.73923 
-29.675 18 
-30.33621 
- 30.272 21 
- 30.208 22 
- 30.08023 
- 30.01627 
- 29.824 40 

- 29.48946 
-- 29.80234 
-29.737 30 
-29.672 30 
-30.33231 
- 30.267 34 
-30.20232 
-30.07232 
-30.007 38 
-29.812 24 

0 
9.5 

19.3 
28.8 
39.0 
48.7 
59 
79.1 
88.9 

120 

full diagonalization for a set of points which are 10 times nearer to the origin than those 
displayed in table 1. These results are shown in table 2. The isotropic and quadratic 
behaviour is clearly displayed in this table. The error in the k - p calculation is equal to 
0.4k2 where k is measured in units of n / a ,  a is the lattice constant of FCC aluminium and 
the error is measured in eV. 

2.2. .Extension to total energy calculations 

The sum of the eigenvalues is just one component of the total energy. Furthermore, the 
eigenvalues should be calculated using the self-consistent charge density. In this section 
we describe how one can calculate the other components of the total energy from k * p  
theory and the charge density, which allows one to iterate to self-consistency. 

2.2.1. Charge density. The charge density is easy enough to express in terms of the k * p 
solutions 

where the wkn are the occupation probabilities of the various solutions which are deter- 
mined by a Fermi function. k and n are summed over the values for which one has k s~ 

solutions. 
However, (7) is not useful in practice since explicit evaluation of all the U,, would 

be computationally expensive. Instead one wishes to express the charge density in terms 
of the known solutions at k = 0. 
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Since we know that 
NO 

Ukn (r)  = [c aknm U O m  ( r )  
m 

we may substitute (8) back into (7) to obtain 
N o  'vg 

p(r> = E W k n  E [c a~nmak,m'Uo*;n(r)UOm'(r).  
k .  n m m' 

Reversal of the order of summation yields 
Nn N o  

p(r) = 2 m 2 m' (E k . n  W k n a ~ n m a k n m ' ~ U ~ m ( r ) U O m ' ( r ) ,  

The quantity in large brackets is an No-by-N, matrix which is easily obtained as a by- 
product of the process with which one finds the k - p  eigenvalues. As such its extra 
computation time is negligible. After solution at all k points, one must sum over m and 
m' at each point in real space to obtain the charge density. The computational time for 
this process is independent of the number of kpoints and is proportional to N , N i ,  where 
N ,  is the number of real space grid points in the unit cell. For large numbers of k points, 
this ensures that computing the charge density will not be a critical process so that the 
calculation of the charge density will take no longer than the determination of the 
eigenvalues. 

2.2.2. Total energies. The total energy consists of a number of components. Two of 
them, the Ewald energy and the pseudopotential core energy are functions of only the 
ion types, positions and unit cell parameters. They are independent of the electronic 
structure and hence the k-point sampling. Other components of the total energy, the 
Hartree energy, the electron-ion energy and the exchange-correlation energy are func- 
tions of the charge density. As such they are straightforward to evaluate once the charge 
density has been calculated. Eigenvalues are obtained directly from the k p process and 
may be summed with appropriate weightings. 

2.2.3. Forces. For many applications one requires knowledge of the forces on the atoms 
and stresses on the unit cell. Some components of these quantities are independent of 
the electronic structure, some are functions of the charge density and one depends on 
the kinetic energy of each solution. Using the techniques outlined above all of these 
quantities can be calculated without explicit evaluation of the Ukn. Thus the calculation 
of forces and stresses is no more time consuming than evaluation of the eigenvalues. 

It is clear then that the terms required for the extension of the k . p  method to total 
energy calculations are readily computed and for large k-point sets these will not 
significantly increase computation times. What is not clear, is the extent to which the 
errors in the eigenfunctions, eigenvalues, charge densities and potentials lead to errors 
in the calculation of total energy and total energy differences. This question is addressed 
in section 5. 

3. Structure of a k * p total energy calculation 

A k - p  total energy calculation can be thought of as executing in two distinct stages. In 
the first stage one must generate No solutions at the point ko from which one intends to 
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perform k p calculations. These solutions have been obtained by relaxation to near self- 
consistency by a Car-Parinnello (1985) scheme as modified by Payne et a1 (1986) with 
the ionic positions kept frozen. In this work, the point ko has been chosen to be the point 
k = 0. Again it should be stressed that there is no reason why one should not choose an 
alternative k-point or indeed a mesh of k-points. 

In the second stage of the calculation, one uses the No states at k,, = 0 as a basis to 
derive the k - p solutions over a Monkhorst-Pack grid of other k points. A new estimate 
for the charge density and hence the potential is calculated from the occupied eigenstates 
of the grid. In the present work the occupancy of a state is calculated using the technique 
developed by Fu and Ho (1983) with an energy broadening of 0.04 eV. The k = 0 
solutions are then allowed to evolve under the updated Hamiltonian and the whole 
procedure iterated to as near self-consistency as required. 

4. The Harris energy functional 

As stated in the previous section, one can iterate the many k-point calculation to as near 
charge self-consistency as required. The computational time taken is proportional to the 
number of iterations. To make this time as small as possible, we want to evaluate the 
energy at each iteration using an energy functional which is stationary at the ground 
state density so that the errors in the energy will be second order with respect to the 
errors in the charge density. One energy functional that fulfils this criterion is the Harris 
energy functional which is defined as: 

where EH is the Hartree energy, Exc is the exchange-correlation energy, E,, is the 
nuclear-nuclear interaction, pxc is the exchange correlation potential, E ,  is the ith 
eigenvalue and wi is the corresponding occupation probability. This expression is made 
up of terms which are functions of the input charge density and a term which is the 
weighted sum of the output eigenvalues. The output charge density does not appear in 
the expression. An alternative choice for the energy functional would be the Kohn- 
Sham functional. We prefer the Harris functional over the Kohn-Sham functional 
because it does not require knowledge of the output charge density or of the output 
kinetic energy. Neither of these quantities are particularly computationally expensive 
to evaluate, but not having to calculate them does provide a small saving in time. 

Having used a stationary expression for the energy so that the number of iterations 
required will be as small as possible, the question remains, how many iterations are 
required? The answer to this question will vary from structure to structure and depends 
on the difference between the potential produced by the single k-point and that produced 
by the large number of k-points. For any given situation the best that one may hope for 
is that no additional iterations toward self-consistency are required. That is to say that 
it is possible to use only the self-consistent potential of the occupied states at k = 0 when 
computing the k - p total energy. 

This use of no additional self-consistency iterations is not as crude as may first be 
thought. In the idealized case of a free electron meal all states produce the same charge 
density. For a nearly free electron metal such as aluminium, one might reasonably expect 
that the charge produced by different k points would be very similar. Consequently, it 
seems likely that the charge density and potential produced by the k = 0 states would be 
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Table3. Variation with respect togridsize of theeigenvalue sum (Zeig) and Harrisfuinctional 
(EHarns) after no k * p  iterations for FCC aluminium with a lattice parameter of 4.15 A. 

23 -34.903 52 -230.27300 
43 -35.12805 -230.509 OS 
6' -35.49425 -230.876 90 
83 - 35.496 36 -230.872 05 

10' -35.451 14 - 230,825 78 
123 - 35.425 82 -230.800 69 
14) - 35.428 44 -230.80447 
163 -35.43638 - 230.8 13 87 

close to the true self-consistent charge density and potential generated by many kpoints. 
The effect of any discrepancies that do exist will to a certain extent be reduced by use of 
the Harris functional, which near the ground state density shows errors in the energy 
which are second order in the error in charge density. All of this would seem to suggest 
that use of the Harris functional with no self-consistency iterations may be an adequate 
and straightforward method of energy evaluation for the second part of the k p total 
energy calculation. 

To test the validity of this scheme, we consider a single fixed structure, FCC aluminium 
with a lattice parameter of 4.15 A. We calculate the total energy for Monkhorst- 
Pack grids of 2 x 2 x 2, 4 X 4 x 4, 6 x 6 X 6, 8 X 8 x 8, 10 x 10 x 10, 12 x 12 x 12, 
14 X 14 X 14,16 X 16 X 16 using up to 20 iterations. From now on we will refer to such 
grids as 23, 43 etc. A unit cell of four atoms is used and a plane wave basis set with a cut- 
off energy of 100 eV. The pseudopotential is that of Goodwin et al(1990) and we use 
the exchange and correlation function of Ceperley and Alder (1980) as parametrized by 
Perdew and Zunger (1981). The value of the Kohn-Sham functional after 20 self- 
consistency iterations and the Harris expression before any self-consistency iterations 
are shown in tables 4 and 3 respectively. 

Comparison of the results shown in tables 3 and 4 show that the use of the Harris 
functional with the charge derived from only the k = 0 states introduces an error in the 
total energy of only 3 x eV. (Note that the eigenvalue sum on the first and 20th 
self-consistency iteration differ by 0.08 eV. That is more than an order of magnitude 
greater than the error in the total energy.) For other sizes of unit cell the magnitude of 
the error in the total energy is comparable and the sign is always the same. Consequently 
one would expect that this error would be even less for energy differences. 

In this work, we will be looking at energy differences of the order of 0.1 eV. It is 
clear that in this context, the error introduced by use of the Harris functional with no 
self-consistency iterations is insignificant. From now on all energies will be evaluated 
using this scheme. 

The idea of using a different numbers of k-points to represent the potential and to 
evaluate the eigenvalue sum can be incorporated in any computational method. In the 
present case the potential is adequately represented by the potential produced by only 
the k = 0 states. In general this will not be the case, although the stationary property of 
the Harris functional will ensure that one may always realistically use fewer states in 
representing the input charge density than in representing the output eigenvalue sum. 
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Table 4. Variation with respect to grid dimension of the eigenvalue sum (Teig) and Kohn- 
Shamenergyfunctional (EIoI) after20k * piterationsfor FCCaluminiumwithlatticeparameter 
of4.15 A .  

23 - 34.823 23 
4’ - 35.058 99 
6’ -35.425 90 
83 -35.421 40 

10’ -35.37541 
123 -35.34996 
14’ -35.353 79 
163 -35.36305 

-230.275 92 
- 230.5 1 1 67 
-230.87859 
-230.87408 
-230.828 10 
-230.802 64 
-230.80647 
-230.815 74 

Structures which require self-consistency iterations in the second stage of the program 
do not invalidate the k p method since the self-consistency iterations can be performed 
cheaply using the method outlined in section 2. 

For the purposes of this paper there is another advantage of the Harris functional in 
that it allows an easy analysis of the errors due to the k p method and those due to any 
finite sampling procedure. This is because the only variable quantity in the Harris 
expression for total energy after no self-consistency iterations is the eigenvalue sum, 
although even this is a function of that fixed input potential produced by the states at 
k = 0. The difficult problem of analysing the behaviour of the self-consistent total energy 
with respect to sampling procedure is thus reduced to a much easier problem. That is 
the problem of the variation in the sum of eigenvalues of a fixed single-particle Ham- 
iltonian with respect to different grids and with respect to different methods of solution. 
In considering the total energy, it is no longer necessary to consider anything but the 
eigenvalue sum, and it is no longer necessary to worry about how the self-consistent 
potential varies as more k-points are added. With the help of this considerable sim- 
plification we turn to an analysis of the errors expected for a fixed structure and the 
errors in energy differences. 

5. Errors in total energy calculations 

5.1. General considerations 

In the previous section we explained that in analysing the total energy of a fixed structure 
with respect to sampling procedure, it is possible to remove all but the contribution of 
the eigenvalue sum. In this section we use this fact to investigate the errors in calculating 
the total energy of a fixed structure and the errors in calculating energy differences 
between different structures. We also attempt to partition the error into that part which 
is due to the approximate nature of the k - p  method and that part which is due to the 
approximation inherent in describing an infinite number of k points with a finite number 
of k points. The former will be called the k - p  error and the latter the finite sampling 
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error. In all of this, we ignore any errors due to finite energy cut off or due to inadequacies 
of the pseudopotential. 

5.2. The two sources of error 

From previous sections we know that the error in the total energy can be approximated 
by the error in the eigenvalue sum for the fixed potential produced by the k = 0 states. 
We now formally divide this error into two components. 

For any grid dimension, we can evaluate the eigenvalue sum using the k p method. 
We will call this ‘the k - p sum for that grid’. Similarly, for any grid we could evaluate the 
eigenvalue sum by full solution using all N planes waves. We will call this quantity ‘the 
exact sum for that grid’. In both cases we use the self-consistent potential of the k = 0 
states. Then we can define the ‘k  p error’ for a particular grid as the difference between 
the k - p  sum and exact sum for that grid. The ‘finite sampling error’ for a particular grid 
will be defined as the difference between the exact sum for that grid and the exact sum 
for an infinitely fine grid. 

The k - p  error is that error which the k . p  method introduces for a particular 
grid whereas the finite sampling error would be present even if the eigenvalues were 
calculated exactly. We shall see later that as the grid dimension is increased, the finite 
sampling error tends to decrease but that the k ‘ p  error tends to increase. Ideally, one 
is searching for a grid size which reduces the finite sampling error whilst keeping the k - p 
error manageable and consequently minimizes the total error. 

5.3. Errors in the total energy of fixed structure 

In this section we concentrate on a fixed structure: Fccaluminium with alattice parameter 
of 4.15 A using the solutions at a single k-point ( k  = 0). As noted previously this gives 
an extreme test of the k * p  method since the electronic states over a large Brillouin zone 
are generated from the solutions at a single point on the edge of the irreducible zone. 

5.3.1. k * p  errors. To evaluate the k * p  error, we calculate the exact and k * p  sum for a 
series of small grids up to 1113 using the fixed self-consistent potential generated by the 
k = 0 states. The results are shown in table 5. As the grid size increases, some sampling 
points move further away from the point k = 0 and some sampling points move nearer 
to this point. In section 2 it was noted that the k - p  error of a particular eigenvalue 
increases at least as fast as lkI2. The result of this nonlinearity is that the k o p  error 
increases with grid size. However the nature of the Monkhorst-Pack scheme is such that 
as the grid dimension increases, the successive increases in the maximum distance 
extrapolated get progressively less. Indeed the furthest that one must extrapolate is to 
the zone boundary itself. Consequently one would expect a k - p  error that saturates at 
high grids. The results in table 5 show this. One can expect a maximum k e p  error of 
around 0.6 eV in the energy of a fixed structure. The magnitude of this error can be 
reduced by a factor of four at no additional computational cost simply by using the k- 
point (0.5,0.5,0.5)n/a, thus halving the averageextrapolationdistancein theirreducible 
zone. 

5.3.2. Finitesample errors. The finite sampling errors can be thought of as arising in two 
ways. The first is that numerically integrating a quadratic function using the trapezium 
rule will tend to underestimate the value of the integral. The second is that a finite 
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Table 5. Variation with respect to grid dimension of the k * p  sum (Zeig,.,), the exact sum 
(Zeig,,,,,) and the k p error for FCC aluminium with lattice parameter 4.15 A. The electronic 
potential is the self consistent potential produced by the occupied states at k = 0. 

23 -34.823 -35.113 0.289 
4 3  -35.059 -35.692 0.633 
63 -35.425 - 35.941 0.515 
83 -35.421 -36.038 0.616 

103 -35.315 -35.995 0.619 
123 -35.350 - 35.951 0.601 

Table 6 .  Estimate of fintie sampling error (Zeig - Zeig,,) for FCC aluminium at a lattice 
parameter of 4.15 A for series of k-point grids. 

13 
23 
4’ 
6j  
83 

103 

6.546 
0.838 
0.259 
0.009 

-0.087 
-0.044 

number of k points will poorly describe the Fermi surface tending to overestimate the 
eigenvalue sum. 

The first column of table 5 shows that exact sum (as defined previously) for various 
grids. It is clear from these figures that the definition of the Fermi surface is the most 
significant problem associated with finite sampling. If we take the value of the exact sum 
for 123 as an approximation to its value in the case of infinite sampling then one can 
calculate the finite sampling error as a function of grid size. This is done in table 6. 

Consideration of the results in tables 5 and 6 suggests that the k - p method is a useful 
strategy for grids of up to 63. For this size grid the k * p error is around 0.6 eV and that 
of finite sampling is around 0.1 eV. After this the sampling error becomes small in 
comparison with the k - p error and increasing the grid size hardly affects the total error. 

5.4. Errors in  evaluation o f  energy differences 

Up to now we have only considered the problem of the behaviour of the energy for a 
fixed structure. However for most problems it is energy differences between different 
systems which are important. We must now consider the behaviour of energy differences 
and their derivatives. In order to do this we must investigate the errors in the absolute 
energies described in section 5.3 and determine how they vary for different systems. 

5.4.1. k * p  errors. Examination of the k * p error in energy differences can be achieved 
in the same way as in the previous section by comparison of the exact and k - p eigenvalue 
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Table 7. k * p  sum (Xeig,.,), exact sum (Zeig,,,,,) and k p error for FCC aluminium at various 
lattice parameters and for grids of Z3, 43 and 63. 

Lattice parameter Xeig,,, Xeig,,,,, k p error 
(4 (ev)  (ev)  (eV) 

(a )  Grid = 23 
3.77 
3.82 
3.90 
3.95 
4.15 
4.20 
4.29 
4.34 

-29.312 
- 29.920 
-31.388 
- 32.006 
-34.823 
-35.443 
- 36.643 
-37.253 

( b )  Grid = 43 

-29.574 0.262 
-30.182 0.262 
-31.652 0.264 
-32.273 0.267 
-35.113 0.290 
-35.739 0.296 
-36.953 0.310 
-37.570 0.317 

3.77 
3.82 
3.90 
3.95 
4.15 
4.20 
4.29 
4.34 

- 29.777 
-30.351 
-31.750 
-32.337 
-35.059 
-35.682 
-36.910 
-37.533 

-30.402 
-30.968 
-32.350 
-32.935 
-35.692 
- 36.304 
-37.532 
-38.165 

0.625 
0.617 
0.600 
0.598 
0.633 
0.622 
0.622 
0.632 

(c) Grid = 63 

3.77 
3.82 
3.90 
3.95 
4.15 
4.20 
4.29 
4.34 

-30.121 
- 30.685 
- 32.076 
- 32.669 
-35.425 
- 36.039 
-37.233 
-37.842 

- 30.664 
-31.223 
-32.588 
-33.172 
- 35.941 
-36.551 
- 37.767 
-38.385 

0.543 
0.538 
0.512 
0.503 
0.516 
0.512 
0.534 
0.543 

sum for a series of grids and a series of structures. This has been done for grids of 23, 43 
and 63 at eight different lattice parameters. The results are shown in table 7. 

Table 7 shows that the k - p  error has the same sign for all the lattice parameters. 
Consequently these errors will partially cancel when calculating energy differences. 
Table 7(a) shows the variation of the error with respect to lattice parameter for small 
grids. It is clear that the error increases with increasing lattice parameter. This is easily 
understood in terms of two distinct effects. Firstly, in all cases using the k - p method one 
solves using 19 bands. However for the lowest lattice parameter the full solution uses 
131 plane waves whereas the largest lattice parameter uses 179 plane waves. Hence, for 
the lowest lattice parameter the restriction of 19 bands is less severe but the larger the 
lattice parameter the larger the error. Secondly the larger the lattice parameter the 
smaller is any particular reciprocal lattice vector. In the present system this increases 
the magnitude of (100) components of the pseudopotential so that the band structure 
becomes more perturbed from the free-electron form. The result is that the k - p matrix 
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Table 8. Estimate of the finite sanpling error at a series of grids for a range of lattice 
parameters. E,.,is theexact sum for aMonkhorst-Packk-point gridof dimension N x N X N .  

3.77 
3.82 
3.90 
3.95 
4.15 
4.20 
4.29 
4.34 

7.864 
7.665 
7.416 
7.212 
6.536 
6.384 
6.159 
6.043 

1.090 
1.041 
0.936 
0.899 
0.828 
0.812 
0.814 
0.815 

0.262 
0.254 
0.238 
0.236 
0.249 
0.247 
0.235 
0,220 

elements between the bands we take and those that we ignore increases and the error in 
the k * p method must increase. 

As we move to bigger grids, the error for each lattice parameter increases in much 
the same way as it did for the 4.15 A case. However, there is a tendency for the error at 
very low lattice parameters to increase more than that at intermediate values. This effect 
is simply that for low lattice parameters the zone boundary is further away and so the 
extrapolation error is larger. This effect only becomes apparent for large grids since near 
the origin the k - p  error varies as k2 and higher order terms only, become important 
further away. 

The results show that for the 63 grid the k - p  error of 0.6 eV in the absolute energy 
has been reduced to a maximum k - p error of 0.040 eV in energy differences. This being 
the error in calculating the energy difference between the 4.15 8, structure and either 
the 3.77 8, or the 4.34 A structure. The actual energy differences between these pairs of 
structures are 0.4445 eV and 0.4216 eV respectively, giving a k * p error of around 10%. 
Using the k-point (0.5,0.5,0.5)n/areducesk * p e r r o n  by afactoroffour. The maximum 
k - p  error in energy differences is then around 0.01 eV which is 2% of the energy 
difference. 

5.4.2. Finite sampling errors. There is no reason to assume that the finite sampling error 
will cancel from structure to structure to the same extent as the k * p  error and so it is 
necessary to evaluate the degree of cancellation exactly. The most direct method of 
doing this would be to repeat the full solutions of table 5 for all lattice parameters. To 
do this for grids of up to is a rather time consuming process. Instead we attempt a 
short cut. Using the data of table 7 we approximate the exact sum for infinite sampling 
as equal to the exact sum for the 63 grid. Table 8 shows the finite sampling error with 
respect to lattice parameter and grid size. For a given grid size the finite sampling error 
is roughly proportional to l /a2,  which is proportional to the kinetic energy of the 
occupied states. The lattice parameter varies by 15% over the structures studied so that 
the finite sampling error in energy differences should be equal to around 30% of the 
sampling error for a fixed structure. For the 63 grid the true sampling error in the energy 
ofthe4.15 Ace110.009 eVbutinspectionoftable6showsthat thisissomewhatfortuitous. 
A figure of around 0.1 eV more truly reflects the trend. Using this value one would 
expect an error in energy differences due to finite sampling of around 0.03 eV. The 
corresponding values for 13, 23 ,  43 grids being 2 eV, 0.25 eV and 0.08 eV, respectively. 
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The results again suggest that a grid size of 63 is the largest justified for this particular 
situation. For this size of grid the finite sampling error and the k . p  error become 
comparable and the total error is minimized. It should also be noted that moving from 
total energies to energy differences, the k * p  error has been diminished more than the 
finite sampling error. 

6. Run times 

The potential usefulness of the k ' p method is the degree to which it reduces the run 
times of otherwise very lengthy calculations so that previously intractable calculations 
become tractable. The calculations presented in this paper are not particularly time 
consuming and could have been adequately treated by standard non k * pmethods. They 
were chosen purely for reasons of simplicity on the basis that the conclusions of the 
analysis can be easily extrapolated to more complex systems. 

A total energy k ' p  calculation executes in two stages. In the first stage exact eigen- 
states are calculated self-consistently at a reduced number of k-points and in the second 
stage approximate solutions are calculated at a full set of k-points. The run time may be 
dominated by either the first or second stage of the calculation. The first stage will 
dominate in calculations with very high cut-off energies, with small numbers of k - p k- 
points or in which no self-consistency iterations are required in the second stage of the 
k . p  method, such as the calculations described in this paper. The computational time 
will be dominated by the second stage of the k . p  method when k - p  solutions are 
generated at a large number of k-points or when many self-consistency iterations are 
needed. The saving in computational time depends on which stage of the calculation 
dominates. These two limits are discussed below. 

6.1. Second stage of calculation dominates 

In the past, calculations would be performed by generating self-consistent solutions at 
all k-points considered. The time taken for this could be written Nkto where to is the time 
to generate a self-consistent solution at one k-point and Nk is the number of k-points used 
in the calculation. We shall ignore any variation in the time taken for self-consistency at 
each k-point with the number of k-points included in the calculation. When the time 
taken for the k - p method is dominated by the time taken for the second stage the total 
time taken is Nktl where t l  is the time taken to generate a self-consistent solution at one 
k-point using the k - p  method. In this case the k - p  method is quicker than a full 
calculation by a factor of to/t l .  This ratio is typically several orders of magnitude. 

6.2. First stage of calculation dominates second stage 

If there are fewer k-points or if the structure is more nearly free electron like com- 
putational time of the k - p method will be dominated by the first stage. The run time is 
then simply that required to generate the solutions at the reduced number of k-points. 
In the case considered in this paper this requires the solutions for 19 bands rather than 
the 7 that are actually occupied or partially occupied so that the computational time 
required is of the order 3t0. The non k p method must solve using all the plane wave 
basis states whose energies lie below the cut-off energy at each of the Nk k-points. 
However, only the occupied or partially occupied bands need be considered. Hence a 



k-point sampling and the k - p method 9851 

time Nkto is required for the conventional calculation. The gain of the k . p  method in 
this case is N k / 3 .  

For the examples situations considered in this paper the number of k-points in the 
irreducible wedge of the Brillouin zone is fairly small because the structures all have 
cubic symmetry. The time saved by using the k - p  method in this case is fairly modest. 
For larger numbers of k-points, however, the fractional and absolute time savings 
become crucial. 

7. Conclusion 

The computational implementation of the k - p method has been demonstrated to be 
straightforward and fast. For the structures considered and the grid used the method 
has been shown to be subject to an error of around 0.04eV in calculating energy 
differences of around 0.5 eV that is an error of about 10%. It should be noted that this 
error could be reduced by a factor of four with no increase in computation time by using 
the point k = (0.5,0.5,0.5)n/a rather than k = 0 for the initial calculation. Although the 
time saving offered by the k * p  method is relatively small for the particular calculations 
presented in this paper, for many calculations the saving in computational time will be 
typically several orders of magnitude. 

The technique of using a different number of k-points for calculating the electronic 
potential and for calculating the electronic eigenvalues has been shown to be particularly 
efficient in the present case. Such a technique is not restricted to the k . p  method and 
may be applicable in a wide range of systems at a considerable saving of computational 
time. 

Further work needs to be undertaken in order to investigate how the results of this 
work should be modified for different sized Brillouin zones and for comparing total 
energies between structures whose Brillouin zones have different shapes. One should 
also like to investigate the possibility of performing k * p  expansions about not one, but 
a coarse grid of k-points. Although the k - p  method is an approximate method, it is a 
controlled approximation in the sense that by suitable choice of parameters one may 
trade off accuracy against speed to an arbitrary extent. Further work needs to be 
performed in order to assess the optimal choice of parameters. Finally the results 
presented in this paper show that the k * p  error is rather predictable in many ways. It is 
always positive and it increases roughly quadratically with increasing extrapolation 
distance. Work is already in progress to estimate the magnitude of the error in any 
particular calculation so that the accuracy of the k - p method can be significantly 
improved. 
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